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Abstract We show that a non-equilibrium diffusive dynamics in a finite-dimensional space
takes in the Lagrangian frame of its mean local velocity an equilibrium form with the de-
tailed balance property. This explains the equilibrium nature of the fluctuation-dissipation
relations in that frame observed previously. The general considerations are illustrated on few
examples of stochastic particle dynamics.

Keywords Non-equilibrium diffusions · Fluctuations-dissipation relations

1 Introduction

In the last decades, non-equilibrium statistical mechanics has been a subject of intensive
studies. One of the multiple aims of the research is the understanding of essential differ-
ences between the equilibrium and non-equilibrium dynamics. This is the question that we
shall address below. In the modelling of statistical-mechanical dynamics, an important role
has been played by stochastic Markov processes. Although largely idealized, they often
provide a sufficiently realistic description of experimental situations and have tradition-
ally served as a playground for both theoretical considerations and numerical studies. The
Markov processes corresponding to the equilibrium dynamics are characterized by the de-
tailed balance property assuring that the net probability fluxes between micro-states of the
system vanish. On the other hand, in the non-equilibrium Markov dynamics, the detailed
balance is broken and there are non-zero probability fluxes even in a stationary situation.

In the present paper, we shall consider only diffusive processes, discarding Markov
processes with discrete time or random jumps. For such systems, the detailed balance can be
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expressed as the vanishing of the probability current that is non-zero in the non-equilibrium
situations. It is convenient to represent the probability current in a hydrodynamical form as
the instantaneous probability density of the process multiplied by the mean local velocity.
The latter is the average instantaneous velocity of the process conditioned to pass through a
given point. It will play the main role in what follows.

In the past, there have been many attempts to apply ideas from statistical mechanics
to the hydrodynamics of turbulent flows. The success was limited by the fact that most
methods of statistical physics had been developed for systems in or close to equilibrium
whereas developed turbulence is a far-from-equilibrium phenomenon. Here we shall fol-
low a reversed strategy, applying an idea from hydrodynamics to non-equilibrium statistical
mechanics. There is a long tradition (going back to Lagrange) to describe the evolution of
hydrodynamical fields in the Lagrangian frame that moves with fluid particles [22]. It is be-
lieved that such a description makes the intrinsic features of fluid dynamics at small scales
more directly accessible than in the Eulerian (i.e. laboratory) frame. This is particularly true
about the hydrodynamical advection that gains a simple representation in the Lagrangian
frame. The main result of the present paper consists of a simple observation that the non-
vanishing probability current in a Markov diffusion may be decoupled from the stochastic
dynamics by passing to the Lagrangian frame of the mean local velocity. More exactly, in
the latter frame, the stochastic dynamics, although non-stationary, satisfies the detailed bal-
ance condition and the instantaneous probability density of the process does not change in
time. The equilibrium-like Lagrangian-frame process does not contain information about
the non-vanishing probability current of the original Eulerian-frame process but, if that in-
formation is provided independently, the Eulerian-frame process may be reconstructed from
the Lagrangian-frame one. In short, the passage to the Lagrangian frame of the mean local
velocity re-expresses a non-equilibrium diffusion process as an equilibrium-type one plus
the decoupled probability current. To our knowledge, this rather straightforward observa-
tion about non-equilibrium diffusions has not been discussed in the literature, although a
similar idea was recently employed in the quantum many-body dynamics [35].

The paper consists of seven Sections and four Appendices. Section 2 sets the stage and
notations by briefly stating the basic definitions relevant for the diffusion processes that
we consider. We introduce the notions of the probability current and of the mean local
velocity and recall the concept of detailed balance. The crucial Sect. 3 is devoted to the
Lagrangian picture of diffusions. We define the Lagrangian frame of the mean local veloc-
ity and compute the instantaneous probability density of the Lagrangian-frame process. By
working out the stochastic differential equation satisfied by this process, we show that it
is a non-stationary diffusion with the detailed balance property. Two simple examples il-
lustrate the general considerations: a diffusion of a particle on a circle in the presence of
a constant force and a linear stochastic equation describing a Rouse model of a polymer
in shear flows. We also discuss the reconstruction of the original Eulerian-frame process
from the Lagrangian-frame one. Section 4 is devoted to the Langevin equations with both
Hamiltonian and non-conservative forces. In this case, it is convenient to modify the defin-
ition of the probability current and the mean local velocity to assure that they vanish in the
absence of the non-conservative drift. The main properties of the Lagrangian-frame process
are unaffected by this modification. We illustrate the general discussion by the example of
a harmonic chain. Section 5.2 discusses the extensions of the Fluctuation-Dissipation The-
orem to the non-equilibrium situation in the light of the results about the Lagrangian-frame
process. These results provide a deeper reason for the observation made in [7], see also [29],
that the fluctuation-dissipation relations takes the equilibrium form in the Lagrangian frame
of the mean local velocity. In Sect. 6, we point out that important non-equilibrium diffu-
sion processes in infinite-dimensional spaces, like the one-dimensional KPZ equation or the
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processes describing the large-deviations regime of fluctuations around the hydrodynamical
limit of the boundary-driven zero-range particle processes do not possess global Lagrangian
picture. Finally, Sect. 7 presents our conclusions. Appendices collect some more technical
arguments.

2 Eulerian Picture of Diffusions

2.1 Diffusion Processes

We shall begin by considering a general diffusion process xt in a d-dimensional (phase-)
space X with coordinates (xi), of the same type as in [6] that was devoted to the study of
fluctuation relations for such processes. The examples we shall have in mind include various
types of Langevin dynamics used to model equilibrium and non-equilibrium dynamics as
well as the Kraichnan model of turbulent advection [11]. Of the rich theory of diffusion
processes, see e.g. [25, 27, 32], we shall need only few basic facts that we collect below.
The process xt is assumed to satisfy the stochastic differential equation (SDE)

ẋt = ut (xt ) + ζt (xt ), (2.1)

where ẋt ≡ dxt

dt
and, on the right hand side, ut (x) is a time-dependent deterministic vector

field (the drift), and ζt (x) is a Gaussian random vector field with mean zero and covariance

〈ζ i
t (x)ζ j

s (y)〉 = 2δ(t − s)D
ij
t (x, y). (2.2)

Note that ζt (x) is a white noise in time so that (2.2) requires a choice of a stochastic conven-
tion. As in [6], we shall interpret it in the Stratonovich sense to assure that ui

t (x) and ζ i
t (x)

transform as vector fields under a change of coordinates.1 The single time expectations of
functions of the process xt evolve according to the equation

d

dt
〈f (xt )〉 = 〈(Ltf )(xt )〉, where Lt = ûi

t ∂i + ∂jd
ij
t ∂i (2.3)

with

d
ij
t (x) = D

ij
t (x, x), ûi

t (x) = ui
t (x) − ri

t (x), ri
t (x) = ∂yj D

ij
t (x, y)|y=x (2.4)

are the instantaneous generators of the process xt . Note the presence of the term rt correcting
the drift and due to the dependence of the covariance of ζt on the points in X . The time
evolution of the instantaneous (i.e. single-time) probability density function (PDF) of the
process

ρt (x) = 〈δ(x − xt )〉 (2.5)

is governed by the formal adjoints L
†
t of the generators Lt :

∂tρt = L†
t ρt = −∂i[ûi

tρt − d
ij
t ∂jρt ]. (2.6)

1In probabilists’ notations, (2.1) would read dxt = ut (xt ) dt +∑
n Xn(xt ) ◦ dWn

t where Xn are vector fields

such that 2Dij (x, y) = ∑
n Xi

n(x)X
j
n(y) and Wn

t are independent Wiener processes.
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The transition PDF’s of the Markov process xt given by the conditional expectations

P (s, x; t, y) = ρs(x)−1 〈δ(x − xs)δ(y − xt )〉 with s ≤ t (2.7)

satisfy the Chapman-Kolmogorov composition rule
∫

P (r, x; s, y)P (s, y; t, z) dy =
P (r, x; t, z) and the Kolmogorov differential equations

∂sP (s, x; t, y) = −Ls(x)P (s, x; t, y), ∂tP (s, x; t, y) = L†
t (y)P (s, x; t, y). (2.8)

The latter, together with the condition P (t, x; t, y) = δ(x − y), determine the transition
probabilities under appropriate regularity assumptions [32].

2.2 Probability Current and Mean Local Velocity

Some other basic notions concerning Markov diffusions will play a central role below. The
evolution equation (2.6) for the instantaneous PDF (2.5) of the process xt has the form of
the continuity equation

∂tρt + ∇ · jt = 0 (2.9)

with the probability current

j i
t = [ûi

t − d
ij
t ∂j ]ρt (2.10)

whose flux through the boundary of any region V gives the rate of change of the probability
that xt belongs to V . A more transparent interpretation of the current jt (x) is given by the
formula:

j i
t (x) = lim

ε→0

〈
xi

t+ε − xi
t−ε

2ε
δ(x − xt )

〉

≡ 〈ẋi
t δ(x − xt )〉 (2.11)

that is proven in Appendix A. For it to hold, it is essential to use the symmetric derivative
over time of xt because the left and right time derivatives lead to different results, with the
difference coming from the white noise contribution to ẋt [23].

The probability current j i
t (x) may be written in the form borrowed from hydrodynamics

as ρt (x)vi
t (x) where

vi
t (x) = ρt (x)−1j i

t (x) = 〈ẋt δ(x − xt )〉
〈δ(x − xt )〉 = ûi

t (x) − d
ij
t (x)∂j lnρt (x) (2.12)

has the interpretation of the time t mean velocity of the process conditioned to be at point x

(once again, the velocity should be defined by the symmetric time derivative). Accordingly,
the quantity vt (x) is called the mean local velocity. Geometrically, vt is a time dependent
vector field on X , as we show in Appendix B. The continuity equation (2.9) takes now a
hydrodynamical form of the advection equation

∂tρt + ∇ · (ρtvt ) = 0 (2.13)

for the density ρt (x) transported by the velocity field vt (x).
The vanishing of the probability current jt (x) for densities ρt , or of the related mean local

velocity vt (x), is usually taken as the definition of the detailed balance for the process xt . It
assures that the instantaneous PDF of xt is time-independent: ρt ≡ ρ. Assuming the detailed
balance and introducing the Hamiltonian H(x) = −β−1 lnρ(x) + const., where β−1 is the
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temperature in the energy units, the SDE (2.1) may be rewritten as the equilibrium-type
Langevin equation

ẋi
t = −βd

ij
t (xt )(∂jH)(xt ) + ri

t (x) + ζ i
t (x), (2.14)

with the notations of (2.4). Conversely, a dynamics governed by (2.14) satisfies the detailed
balance relative to the Gibbs density Z−1e−βH(x), where Z (the partition function) is the
normalization factor. Thus the equilibrium form (2.14) of the dynamics is equivalent to the
vanishing of the mean local velocity, the property independent of the choice of coordinate
system. The presence of the correction rt in (2.14) assures that the drift term transforms as
a vector field under a change of coordinates if e−βH transforms as a density, see (B.10) in
Appendix B.

The above general considerations carry over, at least on an informal level, to diffu-
sion processes in infinite-dimensional spaces described by stochastic partial differential
equations. Nevertheless, as explained in Sect. 6, in few important examples of infinite-
dimensional non-equilibrium diffusions there are obstructions to the realization of the part
of our program that we discuss in the next section.

3 Lagrangian Picture of Diffusions

3.1 Lagrangian Frame of Mean Local Velocity

Recall that in hydrodynamics the motion of fluid particles in the Eulerian velocity field vt (x)

is described by the ordinary differential equation

ẋ = vt (x) (3.1)

that generates the flow x 	→ �t(x) assigning to the initial condition x of the fluid particle at
time t0 its position at time t (we suppress the t0-dependence in the notation). One has:

∂t�t (x) = vt (�t (x)) and �t0(x) = x. (3.2)

We assume below that �t is well defined for all times, see, however, Sect. 6. The passage
to the Lagrangian frame of the velocity field vt is realized by the family of inverse transfor-
mations x 	→ �−1

t (x) retracing back the flow. We have assumed that the Lagrangian and the
Eulerian frames coincide at time t0.

Let us apply the above hydrodynamical idea to the diffusion process xt , describing it in
the Lagrangian frame of the mean local velocity vt (x). In this frame, the process xt becomes

x̃t = �−1
t (xt ). (3.3)

In words, x̃t is the point that the particle of the hypothetical fluid moving with the mean local
velocity occupied at time t0 if at time t it is at xt . We shall show that the Lagrangian-frame
stochastic process x̃t is again a diffusion by finding the SDE that it obeys.

3.2 Instantaneous Densities in the Lagrangian Picture

Let us start by addressing the question what are the instantaneous PDF’s of the Lagrangian-
frame process x̃t . These are defined as

ρ̃t (x̃) = 〈δ(x̃ − x̃t )〉 = 〈δ(x̃ − �−1
t (xt ))〉. (3.4)
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Changing variables inside the delta-function on the right hand side, we may rewrite the
above relation as the identity

ρ̃t (x̃) = ϕt(x̃)〈δ(�t (x̃) − xt )〉 = ϕt(x̃)ρt (�t (x̃)), (3.5)

where ϕt is the Jacobian of the transformation �t :

ϕt (x̃) = det((∂j�t )
i(x̃)) = (det(∂i�

−1
t )j (�t (x̃)))−1. (3.6)

On the other hand, it is well known (and easy to check) that the solution of the Cauchy
problem for the advection equation (2.13) may be written in the form

ρt (x) =
∫

δ(x − �t(y))ρt0(y)dy = ϕt(x̃)−1ρt0(x̃) (3.7)

for x̃ = �−1
t (x). In words, (3.7) states that ρt (x) is equal to the density ρt0(x̃) at the initial

point of the Lagrangian trajectory passing through x at time t , divided by the factor ϕt(x̃)

giving the volume contraction around that trajectory. Comparing (3.5) and (3.7), we infer
that

ρ̃t (x̃) = ρt0(x̃). (3.8)

This shows that the instantaneous PDF’s freeze in the Lagrangian frame to the time t0
value of the Eulerian-frame density. Since the process x̃t itself is, in general, non-stationary,
this might come as a surprise, although it is a direct consequence of the advection equa-
tion (2.13).

3.3 Stochastic Equation for the Lagrangian-Frame Process

There are further surprises in the Lagrangian frame resulting in a simplification of the non-
equilibrium dynamics. Let us find the stochastic equation obeyed by the process x̃t . This is a
straightforward, although somewhat tedious, exercise. By the standard chain rule, that holds
for the Stratonovich stochastic equations,

˙̃xi
t = (∂t�

−1
t )i (xt ) + (∂k�

−1
t )i (xt ) ẋk

t . (3.9)

Differentiating over time the identity �−1
t (�t (x̃)) = x̃ and setting x = �t(x̃), we infer the

relation

(∂t�
−1
t )i (x) = −(∂k�

−1
t )i (x) vk

t (x) = −(∂k�
−1
t )i (x) [ûk

t (x) − dkl
t (x)∂l lnρt (x)]. (3.10)

The substitution of the last equality and of (2.1) to the identity (3.9) gives:

˙̃xi
t = (∂k�

−1
t )i (xt ) [−ûk

t (xt ) + dkl
t (xt )∂l lnρt (xt ) + uk

t (xt ) + ζ k
t (xt )]

= (∂k�
−1
t )i (xt ) [ri

t (xt ) + dkl
t (xt )∂l lnρt (xt ) + ζ k

t (xt )], (3.11)

where the second equality follows from (2.4). Note the disappearance of the drift ut from
the right hand side. Let us introduce the Lagrangian-frame white-noise vector field

ζ̃ i
t (x̃) = (∂k�

−1
t )i (x)ζ k

t (x) (3.12)
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for x = �t(x̃). It has mean zero and covariance

〈ζ̃ i
t (x̃) ζ̃ j

s (ỹ)〉 = 2δ(t − s)D̃
ij
t (x̃, ỹ) (3.13)

with

D̃
ij
t (x̃, ỹ) = (∂k�

−1
t )i (x)Dkl

t (x, y)(∂l�
−1
t )j (y) (3.14)

for x = �t(x̃) and y = �t(ỹ). Observe that the covariances D̃
ij
t and D

ij
t are related by the

standard tensorial rule of transformation under the map �−1
t . We shall need two identities

that may be obtained from the change-of-variables relations (B.8) and (B.9) of Appendix B
if we set 
 = �−1

t there. They are:

r̃ ′i
t (x̃) ≡ ∂ỹj D

′ij
t (x̃, ỹ)|ỹ=x̃ = (∂k�

−1
t )i (x) [rk

t (x) + (∂j�t )
h(x̃)dkl

t (x)(∂h∂l�
−1
t )j (x)] (3.15)

and

(∂l�
−1
t )j (x)(∂j ln ρ̃t )(x̃) = (∂l lnρt )(x) − (∂j�t )

h(x̃)(∂l∂h�
−1
t )j (x). (3.16)

Adding the first of the latter equations to the second one multiplied by (∂k�
−1
t )i (x)dkl

t (x),
we obtain the identity

r̃ ′i
t (x̃) + d̃

ij
t (x̃)(∂j ln ρ̃t )(x̃) = (∂k�

−1
t )i (x) [rk

t (x) + dkl
t (x)(∂l lnρt )(x)]. (3.17)

Recalling that ρ̃t ≡ ρt0 for all t and defining the Lagrangian-frame Hamiltonian by the rela-
tion

H̃ (x̃) = −β−1 lnρt0(x̃) + const. (3.18)

for an arbitrary constant, the identity (3.17) permits to rewrite the stochastic equation (3.11)
in the form (2.14):

˙̃xi
t = −βd̃

ij
t (x̃t )(∂j H̃ )(x̃t ) + r̃ i

t (x̃t ) + ζ̃ i
t (x̃t ). (3.19)

This is the main result of this section: the Lagrangian frame process x̃t satisfies the equilib-
rium Langevin equation with detailed balance relative to the density ρt0(x̃) = Z−1e−βH̃ (x̃)

that stays invariant in the Lagrangian frame.
If the original process xt is stationary with ui(x), Dij (x, y) and the single-time PDF

ρ(x) time independent then the corresponding mean local velocity field v(x) is also time-
independent. The Lagrangian-frame process x̃t , however, is non-stationary if v does not
vanish, although its single-time PDF is equal to ρ(x̃) and does not change in time. The
stationary non-equilibrium dynamics becomes in the Lagrangian frame a non-stationary
equilibrium one with the same invariant probability density.

In the case where the original process has time-independent instantaneous PDF’s with
vanishing probability current, the Eulerian and the Lagrangian frame processes coincide.
However, for a non-equilibrium Langevin dynamics

ẋi
t = −βd

ij
t (xt )(∂jHt )(xt ) + ri

t (xt ) + F i
t (x) + ζ i

t (x) (3.20)

with a time-dependent Hamiltonian Ht or/and an additional non-conservative force Ft that
generate non-trivial probability current, the passage to the Lagrangian frame of mean local
velocity vt recasts the dynamics into the equilibrium form (3.19) with a time-independent
Hamiltonian and no non-conservative force. The same is true for the process satisfying the
equilibrium Langevin equation (2.14) but with non-Gibbsian instantaneous densities (relax-
ing to equilibrium or not).
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3.4 Examples

3.4.1 Colloidal Particle on a Circle

The simplest example of a non-equilibrium Langevin dynamics is provided by the over-
damped motion of a particle on a circle with its angular position satisfying the stochastic
equation

θ̇t = −(∂θH)(θt ) + F + ζt (3.21)

with a periodic potential H(θ) = H(θ + 2π), a constant (non-conservative) force F , and
a white noise ζt with covariance 〈ζt ζs〉 = 2Dδ(t − s). Equation (3.21) has a stationary
solution with the invariant PDF ρ given by the formula:

ρ(θ) = Z−1e− 1
D

(H(θ)−Fθ)

(∫ θ

0
e

1
D

(H(ϑ)−Fϑ)dϑ + e
2πF
D

∫ 2π

x

e
1
D

(H(ϑ)−Fϑ)dϑ

)

, (3.22)

where Z is the normalization factor. The current corresponding to this density is constant:

j = [−(∂θH)(θ) + F − D∂θ ]ρ(θ) = DZ−1(e
2πF
D − 1). (3.23)

The one-dimensional dynamics becomes simpler in the variable

x =
∫ θ

0
ρ(ϑ)dϑ (3.24)

taken modulo 1. Note that dx
dθ

= ρ(θ) = jv(θ)−1 so that j−1x is the time that the Lagrangian
trajectory θL(t) of the mean local velocity starting at θ = 0 takes to get to θ . In the variable x,
the invariant density ρ(x) ≡ 1 and (3.21) takes the form

ẋt = j + r(xt ) + ζt (xt ), (3.25)

where ζt (x) = ρ(θ)ζt for θ = θL(j−1x) and

r(x) = Dρ(θ)∂xρ(θ) = D(∂θρ)(θ) = [−(∂θH)(θ) + F ]ρ(θ) − j. (3.26)

In the variable x, the mean local velocity v(x) ≡ j . The corresponding Lagrangian-frame
process x̃t = xt − j (t − t0) and it satisfies the equilibrium-type Langevin equation

˙̃xt = r̃t (x̃t ) + ζ̃t (x̃t ) (3.27)

with r̃t (x̃) = r(x̃ + j (t − t0)) and ζ̃t (x̃) = ζt (x̃ + j (t − t0)) and a constant Hamiltonian.
Figures 1 and 2 represent the invariant density and the mean local velocity with its La-

grangian trajectory, both for the process θt satisfying (3.21) with H(θ) = 0.87 s−1 × sin(θ),
F = 0.85 s−1 and D = 0.036 s−1. Such process models the dynamics of a colloidal particle
kept by an optical tweezer on a nearly circular orbit in the experiment described in [12].

3.4.2 Linear Stochastic Equations

A general class of explicitly soluble examples of non-equilibrium dynamics, with multiple
applications, is provided by stationary linear SDEs in d dimensions of the form:

ẋt = Mxt + ζt , (3.28)
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Fig. 1 (Color online) Left: theoretical invariant PDF ρ(θ) (blue solid line) compared to the histogram of
30000 time values on 1500 trajectories of the processes θt . In the insert the same figure for θ̃t undistinguish-
able with bare eye from the one for xt . Right: the same figures for the process xt obtained by the change of
variables (3.24)

Fig. 2 (Color online) Left: mean local velocity (blue solid line, everywhere positive) as compared to the
deterministic velocity equal to the drift term in (3.21) (black dotted line changing sign, with a repulsive and
an attractive fixed points well visible in the blowups). Right: Lagrangian trajectory θL(t) of the mean local
velocity with θL(0) = 0

where M is a matrix whose eigenvalues have negative real part and where

〈ζ i
t ζ

j
s 〉 = 2Dij δ(t − s) (3.29)

with a positive matrix D = (Dij ). Here, the invariant density has the Gaussian form [6]

ρ(x) = Z−1e−βH(x) (3.30)

with

H(x) = 1

2β
x · C−1x for C = 2

∫ ∞

0
etMD etMT

dt. (3.31)

The time-integral in the formula for the covariance C converges due to the assumption on
the eigenvalues of M . The mean local velocity corresponding to ρ(x) is

v(x) = (M + DC−1)x (3.32)

so that it depends linearly on x. The Lagrangian-frame process

x̃t = e−(M+DC−1)(t−t0)xt (3.33)
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satisfies the time-dependent equilibrium-type linear Langevin equation

˙̃xt = −βD̃t∇H(x̃) + ζ̃t , (3.34)

where the white noise ζ̃t = e−(M+DC−1)(t−t0)ζt has the covariance

〈ζ̃ i
t ζ̃

j
s 〉 = 2δ(t − s)D̃

ij
t with D̃t = e−(M+DC−1)(t−t0)De−(M+DC−1)T (t−t0). (3.35)

3.4.3 Sheared Suspensions

Stochastic equations of the type (2.1) may be used to model the dynamics of suspensions
of colloidal particles [15] or of a polymer, undergoing an overdamped motion driven by
conservative forces and opposed by friction, see [30] for a recent discussion. An example is
provided by the set of equations for the three-dimensional positions r i of N particles:

γ ṙa
i = −∂ra

i
H( r ) + γ ua

t (r i ) + ζ a
i,t , (3.36)

where γ is the friction coefficient, r = (r i )
N
i=1, H( r ) is the potential energy and u(t, r) is

the velocity field of the solvent. ζ a
i,t are the components of the white noise with the covari-

ance

〈ζ a
i,t ζ

b
j,s〉 = 2γβ−1δabδij δ(t − s). (3.37)

For a diluted colloidal suspension, assuming only 2-body isotropic interactions, one may
take

H( r ) =
∑

i<j

U(rij ) +
∑

i

U0(r i ) (3.38)

for rij ≡ |r i − rj | and for the polymer modeled as a chain of beads with nearest neighbor
interaction (Rouse model [28]),

H( r ) =
∑

i<N

U(ri(i+1)) +
∑

i

U0(r i ). (3.39)

If the solvent is at rest, and the external potential U0 is confining then the detailed bal-
ance holds for the normalized Gibbs density ρ0( r ) = Z−1e−βH(r) which is left invariant
under evolution. If, however, the solvent undergoes a shear flow with ut (r) = f (e1 · r)e2,
where ei are the vectors of the canonical basis of R3, or a vortical motion with ut (r) =
g(|e3 × r|)e3 × r , then the detailed balance is broken and the mean local velocity becomes
equal in the stationary state to

va
i ( r ) = −γ −1∂ra

i
H( r ) + ua

t (r i ) − (γβ)−1∂ra
i

lnρ(r), (3.40)

where ρ( r ) is the non-Gibbsian invariant density.
In general, the form of ρ( r ) is difficult to access in realistic situations. One of exceptions

is the idealized case leading to the linear stochastic equations describing the simplest realiza-
tion of the Rouse model of a polymer suspension with U(r) = 1

2 κr2 and U0(r) = 1
2 kr2 and

with linear velocity field ut (r). For the vortical velocity ut (r) = 1
2ωe3 × r , the stochastic

equation (3.36) takes the form (3.28) with

Mab
ij = −γ −1δab(−κ�ij + kδij ) + 1

2
ωεa3bδij , (3.41)
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where �ij = ∑
|i′−i|=1(δi′j − δij ), and with the matrix

Dab
ij = (γβ)−1δabδij (3.42)

in the noise covariance (3.29). In spite of the vortical motion of the solvent, the Gibbs density
ρ0( r ) independent of the vorticity ω remains invariant for the symmetry reasons. Neverthe-
less, for ω �= 0, the detailed balance is broken and the mean local velocity is given by the
solvent velocity

va
i ( r ) = 1

2
ω e3 × r i . (3.43)

The Lagrangian frame just rigidly rotates around the third axis with the angular velocity 1
2ω

and the Lagrangian-frame process r̃ i,t satisfies the stochastic equation (3.36) with ut set to
zero.

Keeping the same harmonic potentials but replacing the vortical solvent motion by the
shear flow with ut (r) = s(e1 · r)e2 at a constant shear rate s, we obtain the linear stochastic
equation (3.28) with

Mab
ij = −γ −1δab(−κ�ij + kδij ) + sδa2δb1δij (3.44)

and the noise covariance as before. The N ×N matrix −� = (−�ij ) (representing a discrete
Laplacian on the interval) has the eigenvalues ω� = 2[1 − cos( π�

N
)] corresponding to the

normalized eigenvectors

(ϕ�
j ) =

((
2

N

)1/2

cos

(
π�(j − 1

2 )

N

))

for � = 0,1, . . . ,N − 1. (3.45)

The passage to the Fourier modes r̂� ≡ rjϕ
�
j (sum over j ) diagonalizes matrix M into 3 × 3

blocs with the entries Mab
� = δabμ� + sδa2δb1 for μ� ≡ κω� + k. The invariant density ρ( r )

is Gaussian. Its covariance depends quadratically on the shearing rate s and is composed of
the 3 × 3 blocs

Cab
� = 1

βμ�

[δab + σ�(δ
a1δ2b + δa2δ1b) + 2σ 2

� δa2δ2b], (3.46)

for σ� ≡ γ s

2μ�
= γ s

2(κω�+k)
, with the blocs of the inverse covariance:

(C−1)ab
� = βμ�

[

δab + σ 2
�

1 + σ 2
�

(δa1δ1b − δa2δ2b) − σ�

1 + σ 2
�

(δa1δ2b + δa2δ1b)

]

. (3.47)

The mean local velocity has the Fourier components

v̂(r)a
� = (M + DC−1)ab

� r̂b
� , (3.48)

see (3.32), with

(M + DC−1)ab
� = μ�

γ

[
σ 2

�

1 + σ 2
�

(δa1δ1b − δa2δ2b) − σ�

1 + σ 2
�

(δa1δ2b + δa2δ1b) + 2σ�δ
a2δ1b

]

(3.49)
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Fig. 3 Ellipses followed in the
xy-plane under the Lagrangian
flow of mean local velocity by
the Fourier modes r̂� starting at
(1,0) for different values of the
parameter
σ� = γ s

4κ(1−cos( π�
N

))+2k

and is incompressible. Its Lagrangian flow is linear. It factorizes for different Fourier modes
and takes place along ellipses in the planes orthogonal to e3:

φ̂t (r)a
� = δa3r̂3

� + (δa1r̂1
� + δa2r̂2

� ) cos

(
s(t − t0)

2
√

1 + σ 2
�

)

+
[

(δa1r̂1
� − δa2r̂2

� )
σ�

√
1 + σ 2

�

− (δa1r̂2
� + δa2r̂1

� )
1

√
1 + σ 2

�

+ 2δa2r̂1
�

√
1 + σ 2

�

]

sin

(
s(t − t0)

2
√

1 + σ�

)

, (3.50)

see Fig. 3. The ellipses are more and more elongated in the direction of the flow with in-
creasing shearing rate s and decreasing Fourier mode �. The formula for the time-dependent
covariance D̃t of the noise in the Lagrangian-frame process is given in Appendix C.

3.5 Back to Eulerian Frame

When passing to the Lagrangian frame, a part of the information about the system contained
in the probability current or mean local velocity is lost. If we want to reconstruct the original
Eulerian process xt , we have to supply the forgotten information. A convenient way to do
that is to provide the local velocity transformed to the Lagrangian frame:

ṽi
t (x̃) = (∂k�

−1
t )i (x) vk

t (x) = −(∂t�
−1
t )i (x) (3.51)

for x = �t(x̃). Given the vector field ṽt (x̃), consider the flow of transformations x 	→ �̃t (x)

such that

∂t �̃t (x) = −ṽt (�̃t (x)), �̃t0(x) = x. (3.52)

The comparison of (3.51) and (3.52) shows that �̃t (x) = �−1
t (x). This permits to reconstruct

the original process as

xt = �̃−1
t (x̃t ) (3.53)

and the original mean local velocity as

vi
t (x) = (∂j �̃

−1
t )i (x̃) ṽ

j
t (x̃) = −(∂t �̃

−1
t )i (x̃) (3.54)
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for x̃ = �̃t (x). In the special case when the mean local velocity is time-independent (for
example when xt is a stationary process),

ṽi
t (x̃) = −(∂t�

−1
t )i (x) = −(∂t�−t )

i (x) = vi(�−t )
i (x) = vi(x̃) (3.55)

so that the velocity field ṽt coincides with the mean local velocity of the Eulerian frame and
is time-independent.

As we see, the knowledge of the non-equilibrium diffusion xt is equivalent to the knowl-
edge of the equilbrium diffusion x̃t and of the (deterministic) velocity field ṽt .

4 Diffusion Processes with Hamiltonian Forces

4.1 Modified Probability Current and Mean Local Velocity

In many applications, one deals with non-equilibrium diffusions in the presence of Hamil-
tonian forces. It is then useful to single out their contribution and to replace the SDE (2.1)
by

ẋi
t = ui

t (x) + �
ij
t (xt )(∂jHt )(xt ) − β−1(∂j�

ij
t )(xt ) + ζ i

t (xt ) (4.1)

where the term �
ij
t ∂jHt with �

ij
t = −�

ji
t stands for the Hamiltonian force. Geometrically,

the antisymmetic tensor field �
ij
t represents a (possibly time dependent) Poisson structure

but we shall not need its property that assures the Jacobi identity of the Poisson bracket. The
subtraction of β−1∂j�

ij
t on the right hand side of (4.1) assures that the terms involving �t

transform as a vector field under a change of coordinates if the Gibbs factor e−βH transforms
as a density. An example of dynamics (4.1) is provided by the Langevin equation

ẋi
t = −βd

ij
t (xt )(∂jHt )(xt ) + ri

t (xt ) + F i
t (xt )

+ �
ij
t (xt )(∂jHt )(xt ) − β−1(∂j�

ij
t )(xt ) + ζ i

t (xt ), (4.2)

compare to (3.20). In the presence of Hamiltonian forces, it is convenient to redefine the
probability current as

j i
t = [ûi

t + �
ij
t (∂jHt) − b

ij
t ∂j ]ρt , (4.3)

where b
ij
t = d

ij
t − β−1�

ij
t . The new expression for the current jt differs from the one pre-

scribed by (2.10) by the addition of the term β−1∂j (�
ij
t ρt ). The continuity equation (2.9)

still holds since the added term is divergence-less so that the flux of jt through the boundary
of any region V still gives the rate of change of the probability that xt belongs to V . For the
case of the Langevin equation (4.2), the new expression for the current reduces to

j i
t = [−βb

ij
t ∂jHt + F i

t − b
ij
t ∂j ]ρt . (4.4)

In particular, if Ht ≡ H is time-independent and the additional force Ft ≡ 0 then the mod-
ified probability current (4.4) associated to the Gibbs density ρ(x) = Z−1e−βH(x) vanishes
and ρ is preserved by the evolution. It is then natural to extend the notion of equilibrium
dynamics to such a case.

As before, we may introduce the velocity field by the relation

vi
t = ρ−1

t j i
t = ûi

t + �
ij
t (∂jHt ) − b

ij
t ∂j lnρt . (4.5)
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Since now

vi
t (x) = 〈ẋt δ(x − xt )〉

〈δ(x − xt )〉 + β−1ρt (x)−1∂j (�
ij
t ρt )(x), (4.6)

we shall call vt (x) the subtracted mean local velocity. The continuity equation (2.9) still
takes the form of the advection equation (2.13).

If we realize the passage to the Lagrangian frame of the velocity vt of (4.5) as described in
Sect. 3.1, using the flow of vt that we shall still denote by �t and introducing the Lagrangian-
frame process x̃t = �−1

t (xt ), then the considerations of Sect. 3.2 go unchanged because they
only use the advection equation (2.9), not the explicit form of vt (x). As before, we infer that
the instantaneous PDF of the process x̃t is frozen to the time t0 value ρt0 of the PDF of the
Eulerian process xt .

On the other hand, in the derivation of the SDE for the Lagrangian-frame process in
Sect. 3.3, the explicit form of vt (x) was used in (3.10). As a consequence, the SDE for ˙̃xi

t

will pick now the additional term

−(∂k�
−1
t )i (xt )β

−1ρt (x)−1∂l(�
kl
t ρt )(xt )

= −β−1(∂k�
−1
t )i (xt )[�kl

t (xt )(∂l lnρt )(xt ) + (∂l�
kl
t )(xt )]

= −β−1(∂k�
−1
t )i (xt )[�kl

t (xt )(∂l�
−1
t )j (xt )(∂jρt0)(x̃t )

+ �kl
t (xt )(∂j�t )

h(x̃t )(∂l∂h�
−1
t )j (xt ) + (∂l�

kl
t )(xt )], (4.7)

where the second equality follows from (3.16) and the identity ρ̃t = ρt0 . Introducing the
Lagrangian-frame antisymmetric tensor field

�̃
ij
t (x̃) = (∂k�

−1
t )i (x)�kl

t (x)(∂l�
−1
t )j (x) (4.8)

where x = �t(x̃) and observing that

(∂j �̃
ij
t )(x̃) = [(∂h∂k�

−1
t )i (x)�kl

t (x)(∂l�
−1
t )j (x) + (∂k�

−1
t )i (x)(∂h�

kl
t )(x)(∂l�

−1
t )j (x)

+ (∂k�
−1
t )i (x)�kl

t (x)(∂h∂l�
−1
t )j (x)](∂j�t )

h(x̃)

= (∂k�
−1
t )i (x)(∂l�

kl
t )(x) + (∂k�

−1
t )i (x)�kl

t (x)(∂h∂l�
−1
t )j (x)(∂j�t )

h(x̃),

(4.9)
we may rewrite the additional term (4.7) as

−β−1�̃
ij
t (x̃t )(∂jρt0)(x̃t ) − β−1(∂j �̃

ij
t )(x̃t ) = �̃

ij
t (x̃t )∂j H̃ (x̃t ) − β−1(∂j �̃

ij
t )(x̃t ). (4.10)

Altogether, the Lagrangian-frame process x̃t satisfies now the equilibrium-type time-
dependent SDE with a Hamiltonian force:

˙̃xi
t = −βd̃

ij
t (x̃t )(∂j H̃ )(x̃t )dt + �̃

ij
t (x̃t )(∂j H̃ )(x̃t ) − β−1(∂j �̃

ij
t )(x̃t ) + r̃ i

t (x̃t ) + ζ̃ i
t (x̃t ).

(4.11)
Clearly, the modified probability current associated with the conserved density ρt0 =
Z̃−1e−βH̃ vanishes for the Lagrangian-frame process.

4.2 Example of Langevin-Kramers Dynamics

The particular case of Langevin dynamics with Hamiltonian forces is provided by the 2nd
order Langevin-Kramers SDE

mij q̈
j
t = −γij q̇

j
t − ∂iVt (qt ) + fi(qt ) + ξt,i (4.12)
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with the positive mass m = (mij ) and friction γ = (γij ) matrices that, for simplicity, we
assume independent of t and q , with a potential Vt(q) and a non-conservative force ft (q),
and with a white noise ξt with the covariance

〈ξt,iξs,j 〉 = 2β−1σij δ(t − s). (4.13)

We keep the matrix σ different from γ to allow noises modeling environments with non-
homogeneous temperature that violate the Einstein relation σ = γ . The 2nd order equa-
tion (4.12) may be rewritten as the 1st order SDE (4.2) in the phase space of points
x = (q,p) if we set

d =
(

0 0
0 β−1σ

)

, � =
(

0 1
−1 0

)

, Ht = 1

2
p · m−1p + Vt(q),

Ft = (0, (σ − γ )m−1p + ft (q)), ζt = (0, ξt ).

The subtracted mean local velocity in the phase space has here the form

vt = (m−1p + β−1∇p lnρt ,−∇Vt − γm−1p + ft − β−1∇q lnρt − β−1σ∇p lnρt ) (4.14)

and it vanishes for the Gibbs density ρ(q,p) = Z−1e−βH(q,p) in the equilibrium case where
σ = γ , the potential Vt is time-independent, and the non-conservative force ft is absent.

4.2.1 Harmonic Chain

An example of a Langevin-Kramers dynamics is provided by a Fermi-Pasta-Ulam chain [10]
with ends coupled to a friction force and a white noise. Such chains were often used in the
theoretical studies of the Fourier law [3]. Here q = (ra

i ) with i = 1, . . . ,N , a = 1, . . . , d ,
and

γ ab
ij = γ0δ

ab(δi1δ1j + δiNδNj ), σ ab
ij = γ0δ

ab((1 + η)δi1δ1j + (1 − η)δiNδNj ),

mab
ij = m0δ

abδij , V (q) =
N∑

i<N

U(ri(i+1)) +
∑

i

U0(r i ).
(4.15)

The dynamics in the bulk (i.e. for i �= 1,N ) is purely Hamiltonian, whereas the boundary de-
grees of freedom r0 and rN are exposed to the thermal noise at temperatures β−1(1 ±η), re-
spectively, and to friction. The harmonic case (that does not lead to the Fourier law [26]) with
U(r) = κ

2 r2 and U0(r) = k
2 r2 corresponds to the linear stochastic equation of the type (3.28)

with the matrices

Mab
ij = δab

(
0 m−1

0 δij

−(−κ� + k)ij −γ0m
−1
0 (δi1δ1j + δiNδNj )

)

,

Dab
ij = β−1γ0δ

ab

(
0 0

0 (1 + η)δi1δ1j + (1 − η)δiNδNj

)

.

(4.16)

The covariance matrix of the invariant Gaussian measure has the form

Cab
ij = β−1δab

(
( 1

−κ�+k
)ij 0

0 m0δij

)

+ β−1ηδab

(
Xij Zij

−Zij Yij

)

(4.17)
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with matrices X,Y,Z that may be calculated exactly [26] (for η = 0, it reduces to the co-
variance of the Gibbs measure). The subtracted mean local velocity is

v(q,p) = (M + DC−1 − β−1�C−1)

(
q

p

)

, (4.18)

where the matrix on the right hand side has, up to terms quadratic in the relative temperature
difference η, the entries

ηm−1
0 δab

⎛

⎜
⎝

−(Z(−κ� + k))ij m−1
0 Yij

−(Y (−κ� + k))ij −((−κ� + k)Z)ij − γ0m
−1
0 (δi1Y1j + δiNYNj )

+ γ0(δi1δ1j − δiNδNj )

⎞

⎟
⎠ . (4.19)

The Lagrangian flow of v is obtained by the linear action of the matrix

e(M+DC−1−β−1�C−1)(t−t0) which is straightforward to calculate in the linear order in η.

5 Fluctuation-Dissipation Relations

5.1 Equilibrium Fluctuation-Dissipation Theorem

The equilibrium Fluctuation-Dissipation Theorem [5, 20, 24] relates the spontaneous dy-
namical fluctuations in an equilibrium state to the relaxation dynamics after a tiny perturba-
tion out of the equilibrium. It holds for a wide class of equilibrium systems including the
ones described by the equilibrium Langevin equation

ẋi
t = −βd

ij
t (xt )(∂jH)(xt ) + �

ij
t (xt )(∂jH)(xt ) − β−1(∂j�

ij
t )(xt ) + ri

t (xt ) + ζ i
t (xt ) (5.1)

of the type discussed above. We assume that the process xt has the time-independent Gibbs
instantaneous PDF ρ(x) = Z−1e−βH(x) and denote by 〈−〉 the dynamical expectation. The
FDT asserts that [21]

∂s〈O1(xs)O
2(xt )〉 = β−1 δ

δhs

∣
∣
∣
∣
h=0

〈O2(xt )〉h (5.2)

for s < t , where Oa(x) are functions (well behaved at infinity), that we shall call (single-
time) observables, and where on the right hand side the expectation 〈−〉h involves the
process obtained by replacing the Hamiltonian H(x) in the original dynamics (5.1) by its
time-dependent perturbation H(x) − htO

1(x) within some time interval. The left hand side
is the time derivative of the 2-time correlation function in the dynamics determined by (5.1)
and the right hand side is the response of the single-time correlation function to a small
dynamical perturbation of the Hamiltonian of the system. The temperature β−1 appears as
the coefficient relating the two functions. It is often more convenient to consider the time-
integrated version of the FDT:

〈O1(xt )O
2(xt )〉 − 〈O1(xs)O

2(xt )〉 = β−1 ∂

∂h0

∣
∣
∣
∣
h0=0

〈O2(xt )〉h0,s , (5.3)

where 〈−〉h0,s corresponds to the expectation where the original Hamiltonian H(x) is re-
placed starting at time s < t by its time-independent perturbation H(x) − h0O

1(x). For
reader’s convenience, we give a proof of the FDT (5.2) in Appendix D.
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5.2 Modified Fluctuation Dissipation Theorem

We may immediately apply the FDT to the Lagrangian-frame process x̃t obtained from the
process xt satisfying the Langevin equation (4.2). Indeed, as was shown in Sect. 4.1, the
process x̃t = �−1

t (xt ), where �t is the flow of the subtracted mean local velocity (4.5), sat-
isfies the equilibrium stochastic equation (4.11) and has the time-independent instantaneous
PDF ρt0(x̃) = Z−1e−βH̃ (x̃). We infer that for observables Õa(x̃),

∂s〈Õ1(x̃s)Õ
2(x̃t )〉 = β−1 δ

δh̃s

∣
∣
∣
∣
h̃=0

〈Õ2(x̃t )〉h̃ (5.4)

where 〈−〉h̃ involves the process obtained by replacing the Hamiltonian H̃ (x̃) in the
Lagrangian-frame dynamics (4.11) by its time-dependent perturbation H̃ (x̃)− h̃t Õ

1(x̃) dur-
ing a time interval. Observe that this perturbation corresponds to the replacement of the
Hamiltonian Ht(x) in the original equation (4.2) for xt by Ht(x) − h̃t Õ

1(�−1
t (x)). Indeed,

the latter replacement adds the term

βh̃tb
ij
t (xt )∂xj Õ1(�−1

t (x))|x=xt (5.5)

on the right hand side of (4.2) and, in virtue of (3.9), results in the additional term

(∂k�
−1
t )i (xt ) [βh̃tb

kl
t (xt )∂xl |x=xt Õ

1(�−1
t (x))]

= βh̃t (∂k�
−1
t )i (xt )b

kl
t (xt )(∂l�

−1
t )j (xt )(∂j Õ

1)(x̃t )

= βh̃t b̃
ij
t (x̃t )(∂j Õ

1)(x̃t ) (5.6)

with b̃
ij
t = d̃

ij
t − β−1�̃

ij
t in (4.11) for x̃t = �−1

t (xt ) (with the same transformations �t as in
the unperturbed process). Upon defining the Eulerian-frame time-dependent observables

Oa
t (x) = Õa(�−1

t (x)), (5.7)

the Lagrangian-frame FDT (5.4) may be rewritten as the identity

∂s〈O1
s (xs)O

2
t (xt )〉 = β−1 δ

δh̃s

∣
∣
∣
∣
h̃=0

〈O2
t (xt )〉h̃. (5.8)

Note that the time-dependent observables Oa
t (x) are constant along the Lagrangian trajecto-

ries of the velocity (4.5): Oa
t (�t (x)) = Õa(x). In other words, they obey the scalar advection

equation

∂tO
a
t + vt · ∇Oa

t = 0 (5.9)

and are frozen in the Lagrangian frame of the subtracted mean local velocity vt . Since the
values of the time-dependent observable O1 may be chosen arbitrarily at time s and that of
O2 at time t , the only trace of time dependence of the observables Oa in the identity (5.8)
for fixed pair of times s < t enters through the time derivative ∂s on the left hand side that
differentiates also the explicit time-dependence of O1 determined by (5.9). We may then
rewrite (5.8) using observables frozen in the Eulerian frame as the Modified Fluctuation-
Dissipation Theorem,

∂s〈O1(xs)O
2(xt )〉 − 〈(vs · ∇O1)(xs)O

2(xt )〉 = β−1 δ

δhs

∣
∣
∣
∣
h=0

〈O2
t (xt )〉h, (5.10)



Eulerian and Lagrangian Pictures of Non-equilibrium Diffusions 907

Fig. 4 (Color online) Left: the bottom coinciding curves: LHS (continuous black) and RHS (dashed red) of
the integrated MFDT (5.11) for Oa(θ) = sin(θ), the upper (dot-dashed green) curve: the first two terms on its
LHS, the middle (dashed blue) curve: the corrective integral term. Right: RHS (dashed red curve) and LHS
(continuous black curve) of the integrated-in-time Lagrangian-frame FDT (5.4) with Õa(θ̃ ) = sin(θ̃ )

where the expectation 〈−〉h on the right hand side refers now to the process obtained by
replacing the Hamiltonian Ht in (4.2) by Ht(x) − htO

1(x). In the time-integrated form,
(5.10) becomes

〈O1(xt )O
2(xt )〉 − 〈O1(xs)O

2(xt )〉 −
∫ t

s

〈(vσ · ∇O1)(xσ )O2(xt )〉dσ

= β−1 ∂

∂h

∣
∣
∣
∣
h0=0

〈O2(xt )〉h0,s , (5.11)

with a corrective integral term with respect to (5.3). An experimental check of the time-
integrated MFDT for a colloidal particle has been described in [12]. Figure 4 shows the
numerical check of this relation and of its Lagrangian-frame counterpart for the stationary
process solving the SDE (3.21) for Oa(θ) = sin(θ). See also the related earlier works [2, 29]
about a generalization of the Einstein relation to such a system and its experimental verifi-
cation.

The MFDT was proven directly in [7] in the stationary setup and shown to be equivalent
to identity (5.8) similar to the equilibrium FDT (5.2) but for observables frozen in the La-
grangian frame of mean local velocity. In the present paper, we unravel the deeper reason
for that equivalence, namely the fact that the non-equilibrium diffusion process observed
in the Lagrangian frame of the (subtracted) mean local velocity evolves according to an
equilibrium dynamics with a time-independent instantaneous PDF.

5.3 Links to Fluctuation Relations

Reference [7] also discussed fluctuation relation extending the MFDT to non-stationary sit-
uations. It was shown there that the Hatano-Sasa version [14] of the Jarzynski equality [16,
17] reduces close to stationarity to the MFDT for special observables and that one need
Crooks’ extention [8] of the Jarzynski-Hatano-Sasa equality to extract at stationarity the
MFDT for general observables. The results of the present paper permit to propose yet an-
other extension of the MFDT.
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For the process xt evolving accordingly to the Langevin equation (2.14) but with a time-
dependent Hamiltonian Ht(x), the Jarzynski equality reads

〈e−βWt0,t 〉 = Zt

Zt0

, (5.12)

where

Wt0,t =
∫ t

t0

(∂sHs)(xs)ds and Zt =
∫

e−βHt (x)dx, (5.13)

provided that the PDF of xt0 is Z−1
t0

e−βHt0 . Applied to the case with Hamiltonian Ht(x) =
H(x) − ∑

a=1,2 ha
t O

a(x) and expanded to the second order in functions ha
t , (5.12) reduces

to the FDT (5.2). The proof goes as in [6] where it was written for a less general case.
The above observations apply to the case of the Lagrangian-frame dynamics. For the

process x̃t satisfying the SDE (4.11) but with the Hamiltonian H̃ replaced by H̃ (x̃)+ H̃ ′
t (x̃)

with H̃ ′
t = 0 for t ≤ t0, we have for t > t0 the Lagrangian-frame version of the Jarzynski

equality:

〈e−βW̃t0,t 〉 = Z̃t

Z̃
for W̃t0,t =

∫ t

t0

(∂sH̃
′
s )(x̃s)ds (5.14)

and Z̃t = ∫
e−β(H̃+H̃ ′

t )(x̃)dx̃, provided that the PDF of x̃t0 is Z̃−1e−βH̃ = ρt0 . The perturbed
process xt such that x̃t = �−1

t (xt ), with �t standing for the Lagrangian flow of the mean
local velocity vt (x) of the unperturbed process xt , satisfies the SDE (4.2) with the original
Hamiltonian Ht(x) replaced by Ht(x) + H ′

t (�
−1
t (x)). This follows by the same argument

as around (5.5) and (5.6). In terms of the perturbed process xt ,

W̃t0,t =
∫ t

t0

(∂sH̃
′
s )(�

−1
t (xs))ds and

Z̃t

Z̃
=

∫

e−βH ′
t (x)ρt0(x)dx. (5.15)

For H̃ ′(x̃) = −∑
a=1,2 ha

t Õ
a(x̃), one obtains the Lagrangian-frame FDT (5.4) equivalent to

the MFDT (5.10) by expanding the identity (5.14) to the 2nd order in ha
t . Not very surpris-

ingly, there exist different fluctuation relations that may be viewed as an extension of the
MFDT to more general situations.

6 Diffusions Without Global Lagrangian Picture

In the preceding sections, we have discussed diffusion processes in a finite dimensional
phase space. The basic assumption underlying the discussion of the Lagrangian-frame pic-
ture of diffusions was the existence of the Lagrangian flow x 	→ �t(x) of the mean lo-
cal velocity satisfying (3.2). This is guaranteed if the velocity vt (x) is smooth and the
(phase-)space X is compact, like in the circle example, but may be not assured if X is
unbounded in which case the Lagrangian trajectories of vt may blow up in finite time. The
idea of the decoupling of probability flux by the passage to the Lagrangian frame of the
mean local velocity can, in principal, be applied to infinite-dimensional diffusive processes.
It appears, however, that a number of known examples of diffusive processes described by
stochastic PDEs do not allow a global flow of mean local velocity and, hence, do not admit
a global Lagrangian-frame equilibrium-like description. Let us illustrate this phenomenon
in specific cases.
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6.1 One-dimensional Kardar-Parisi-Zhang Equation

The KPZ stochastic PDE [18] describes the fluctuations of a d-dimensional interface with
the height function ht (x). It has the form

∂tht (x) = ν∇2ht (x) + 1

2
λ(∇ht (x))2 + ζt (x) (6.1)

where ζt (x) is the white noise with the covariance

〈ζt (x)ζs(y)〉 = 2Dδ(t − s)δ(x − y). (6.2)

The adjoint generator of the process ht in the (infinite-dimensional) space of the height
functions h has the form

L† =
∫

δ

δh(x)

[

−ν∇2h(x) − λ

2
(∇h(x))2 + D

δ

δh(x)

]

dx. (6.3)

A straightforward (although somewhat formal) calculation [13] shows that in one space-
dimension with periodic boundary conditions (where ∇h = ∂xh), the Gaussian density in
the space of height functions

ρ[h] = Z−1e− ν
2D

∫
(∇h(x))2dx (6.4)

is annihilated by L† (for all values of λ) and thus stays invariant. The corresponding mean
local velocity given by (2.12) has the form

v[h](x) = 1

2
λ(∇h(x))2 (6.5)

and the Lagrangian trajectories of v[h] should be solutions of the equation

∂tht = 1

2
λ(∇ht (x))2 (6.6)

that becomes for ut (x) = −λ∇ht (x) the inviscid Burgers equation [4]

∂tut (x) + ut (x)∇ut (x) = 0 (6.7)

with the solutions satisfying the relation

ut (x + (t − t0)ut0(x)) = ut0(x) (6.8)

and developing discontinuities (shocks) for the first time ts > t0 such that ts = t0 +
x2−x1

ut0 (x2)−ut0 (x1)
for a pair of points (x1, x2). The corresponding height function ht (x) looses

at t = ts the differentiability and, although weak solutions of the inviscid Burgers equation
exist beyond the time ts , there is no unique global invertible Lagrangian flow of the mean
local velocity v[h] and no global Lagrangian-frame picture of the KPZ evolution.
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6.2 Diffusive Hydrodynamical Limits

Similar problems obstruct the existence of the Lagrangian picture in the effective equations
describing the large-deviations regime of fluctuations around diffusive hydrodynamical lim-
its of some lattice particle systems. The evolution of the particles consists of random jumps
to nearby sites. On the scales of the order of the size of the system L, and for times of the
order L2, such stochastic evolution gives rise to an effective diffusion in the space of macro-
scopic densities nt (x) [19, 31]. The dynamics of the densities is given by the continuity
equation ∂tnt + ∇ · jt = 0 for

j i
t (x) = −1

2
Dij (nt (x))∂jnt (x) + ζ i

t (x|nt ) (6.9)

where ζt (x|n) is the density-dependent white noise in time and space with the covariance

〈ζ i
t (x|n)ζ j

s (y|n)〉 = εδ(t − s)δ(x − y)χij (n(x)), (6.10)

where ε−1 ∝ Ld is the total number of microscopic particles assumed to be large. In partic-
ular, in the limit where ε = 0, the density nt (x) satisfies the deterministic hydrodynamical-
limit diffusion equation

∂tnt = 1

2
∂i(D

ij (nt (x))∂jnt (x)). (6.11)

One considers such systems with periodic boundary conditions or with Dirichlet ones where
one fixes the boundary values of the density nt (x) on the boundary of a finite domain
� ⊂ Rd . The first case corresponds to an equilibrium evolution whereas the second one
(with non-constant boundary values) to a non-equilibrium boundary-driven one. The adjoint
generator of the process nt has the form

L† = 1

2

∫ (

∂i

δ

δn(x)

)[

Dij (n(x))∂jn(x) + εχij (n(x))∂j

δ

δn(x)

]

dx (6.12)

up to terms of higher orders in ε. To the leading order, the stationary PDF in the space of
density functions takes the semi-classical form

ρ[n] = e− 1
ε S[n] (6.13)

with the functional S[n] satisfying the Hamilton-Jacobi equation

∫ (

∂i

δS

∂n(x)

)[

χij (n(x))∂j

δS

δn(x)
− Dij (n(x))∂jn(x)

]

dx = 0 (6.14)

and a certain stability condition [1]. According to (2.12), the mean local velocity in the space
of densities has the form

v[n](x) = 1

2

[

∂i(D
ij (n(x))∂jn(x)) − ∂i

(

χij (n(x))∂j

δS

δn(x)

)]

(6.15)

up to terms that vanish at ε = 0. The functional S[n] is explicitly known in few boundary
driven non-equilibrium situations for which one may study the existence of the Lagrangian
trajectories of v[h].
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6.2.1 Zero Range Processes

Here, Dij (n(x)) = ϕ′(n(x))δij and χij (n(x)) = ϕ(n(x))δij for an increasing function ϕ ≥ 0
of n ≥ 0 related explicitly to the jump rates of the zero-range particle dynamics [19]. The
hydrodynamical-limit equation (6.11) reduces to the form

∂tnt (x) = 1

2
∇2ϕ(n(x)) (6.16)

and the functional S[n] satisfies the relation [1]

δS

δn(x)
= lnϕ(n(x)) − lnλ(x), (6.17)

where λ(x) = ϕ(n̄(x)), with n̄(x) providing the stationary solution of (6.16) so that λ(x) is
a harmonic function on the domain � with prescribed boundary values. In virtue of (6.17),

∂i

(

χij (n(x))∂j

δS

δn(x)

)

= ∇ · ϕ(n(x))∇[lnϕ(n(x)) − lnλ(x)]

= ∇2ϕ(n(x)) − ∇ · (ϕ(n(x))∇ lnλ(x)). (6.18)

One infers that in this case

v[n](x) = 1

2
∇ · (ϕ(n(x))∇ lnλ(x)). (6.19)

The equation for the Lagrangian trajectories of v[n] has the form

∂tnt (x) = 1

2
ϕ′(n(x))(∇n(x)) · ∇λ(x)

λ(x)
− 1

2
ϕ(n(x))

(∇λ)2(x)

λ2(x)
(6.20)

which is a quasi-linear 1st-order PDE whose solutions may be composed from character-
istic curves. The existence of global solutions will again be obstructed by caustics, i.e. by
crossings of the projection of the characteristics to the space. That this phenomenon takes
really place may be easily seen in one dimension where λ(x) is a linear function. Besides,
the solutions of (6.20) will not preserve the Dirichlet boundary conditions for nt .

6.2.2 Symmetric Simple Exclusion Process (SSEP)

Here Dij = δij and χij (n) = n(1−n). The functional S[n] is explicitly known in one space-
dimension [9]. It satisfies the identity [1]

δS

δn(x)
= ln

n(x)

1 − n(x)
− ϕ(x|n) (6.21)

where ϕ(x|n) is the solution of the ordinary differential equation

∇2ϕ(x)

(∇ϕ)2(x)
+ 1

1 + eϕ(x)
= n(x) (6.22)

with prescribed boundary values. The mean local velocity has the form

v[n](x) = 1

2
∇(n(x)(1 − n(x))∇ϕ(x|n)). (6.23)
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We do not know if there are obstructions to the existence of the corresponding Lagrangian
flow.

In [33], a non-local mapping of the diffusive process describing the large-deviation
regime of the non-equilibrium boundary-driven SSEP to the equilibrium dual version of a
similar process was described. This was further extended and elucidated in [34]. The method
of [33, 34] uses hidden symmetries of special lattice particle systems and it does not seem
to be related to the Lagrangian ideas developed here.

7 Conclusions

We have shown that non-equilibrium Markov diffusions become equilibrium ones when
viewed in the Lagrangian frame of their mean local velocity. More exactly, the diffusion
process transformed to that frame, although in general non-stationary, satisfies the detailed
balance and has instantaneous probability density that does not change in time and is equal
to the Eulerian invariant density if the original process is stationary. The passage to the
Lagrangian frame decouples the non-zero probability current from the non-equilibrium
process. The equilibrium nature of the Langevin-frame process explains on a deeper level the
equilibrium-like fluctuation-dissipation relations observed in the Lagrangian-frame of mean
local velocity in [7, 29]. Our analysis indicates that the equilibrium and non-equilibrium
diffusions are closer than usually perceived and the entire difference between them may be
encoded in the probability current that does not vanish in the non-equilibrium case. This
seems to be an interesting observation on the fundamental level. In practice, although the
passage to the Lagrangian frame may be realized numerically in simulations of small sys-
tems, its experimental realization is far from obvious and its use in the analysis of stationary
non-equilibrium dynamics may be hampered by the absence of knowledge of the invari-
ant measure that enters the expression for the mean local velocity. As we have also seen,
our arguments apply strictly only to diffusive systems with the global flow of mean local
velocity. Such global flow is absent in important examples of non-equilibrium diffusions de-
scribed by stochastic partial differential equations where Lagrangian picture can be at most
defined locally in the phase space. This is a serious limitation of our Lagrangian approach
to non-equilibrium dynamics. It remains to be seen to what extent the Lagrangian analysis
may be carried through for other models of such dynamics. In particular, the mean local
velocity may be also defined for continuous-time Markov processes with jumps but the pas-
sage to the Lagrangian frame of the latter does not fully restore the detailed balance in such
processes (for which the detailed balance implies the vanishing of the local mean velocity
but is not equivalent to it any more). This suggests that the violations of the equilibrium
features of the Lagrangian-frame dynamics in such systems could be used to quantify the
importance of jumps in Markov non-equilibrium processes. Such topics are left to future
investigations.

Acknowledgements The authors thank Sergio Ciliberto, Gregory Falkovich, Juan Ruben Gomez-Solano
and Artyom Petrosyan for discussions. R.C. acknowledge the support of the Koshland Center for Basic Re-
search and K.G. of the project ANR-05-BLAN-0029-03.

Appendix A

We check here the formula (2.11) for the probability current (2.10). First note that for a
similar average as in (2.11) but with the right time derivative,
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〈ẋi
t+δ(x − xt )〉 ≡ lim

ε→0

〈
xi

t+ε − xi
t

ε
δ(x − xt )

〉

= lim
ε→0

1

ε
ρt (x)

(∫

P (t, x; t + ε, y)yidy − xi

)

= ρt (x)(Ltx
i)

= [ûi
t (x) + (∂jd

ij
t )(x)]ρt (x). (A.1)

On the other hand, for the left time derivative,

〈ẋi
t−δ(x − xt )〉 ≡ lim

ε→0

〈
xi

t − xi
t−ε

ε
δ(x − xt )

〉

= lim
ε→0

1

ε

(

ρt (x)xi −
∫

ρt−ε(y)yiP (t − ε, y; t, x)dy

)

= (L†
t ρt )(x)xi − L†

t (ρt (x)xi)

= [ûi
t (x) − (∂jd

ij
t )(x) − 2d

ij
t (x)∂j ]ρt (x), (A.2)

where the second equality combined the derivatives over ε of ρt−ε and of P (t − ε, y; t, x).
The addition of the relations (A.2) and (A.1) gives the identity (2.11).

Appendix B

Let us check that under the change of variables x 	→ x ′ = 
(x), the mean local veloc-
ity (2.12) transforms as a vector field. In new variables, the process x ′

t = 
(xt ) satisfies the
Stratonovich stochastic equation

ẋ ′i = u′i
t (x ′) + ζ ′

t (x
′) (B.1)

with

u′i
t (x ′) = (∂k
)i(x)uk

t (x), ζ ′i
t (x ′) = (∂k
)i(x) ζ k

t (x) (B.2)

for x ′ = 
(x). The covariance of the white noise ζ ′
t (x

′) is

〈ζ ′i
t (x ′)ζ j

s (y ′)〉 = 2δ(t − s)D
′ij
t (x ′, y ′) (B.3)

for

D
′ij
t (x ′, y ′) = (∂k
)i(x)Dkl

t (x, y)(∂l
)j (y) (B.4)

and x ′ = 
(x), y ′ = 
(y). The instantaneous PDF of the process x ′
t is

ρ ′
t (x

′) = ρt (x)

(
∂(
(x))

∂(x)

)−1

, (B.5)

where ∂(
((x))

∂(x)
stands for the Jacobian of the change of variables. In the new variables, the

mean local velocity (2.12) is

v′i (x ′) = û′i
t (x ′) − d

′ij
t (x ′)(∂j lnρ ′

t )(x
′), (B.6)
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where

d
′ij
t (x ′) = D

′ij
t (x ′, x ′) and û′i

t (x ′) = u′i
t (x ′) − r ′i

t (x ′). (B.7)

The deterministic correction

r ′i
t (x ′) = ∂y′j D′ij

t (x ′, y ′)|y′=x′ = (∂j

−1)h(y ′) ∂yh [(∂k
)i(x)Dkl

t (x, y)(∂l
)j (y)]|y=x

= (∂k
)i(x) ∂lD
kl
t (x, y)|y=x + (∂j


−1)h(x ′)(∂k
)i(x)dkl
t (x)(∂h∂l
)j (x)

= (∂k
)i(x) [rk
t (x) + dkl

t (x)(∂j

−1)h(x ′)(∂h∂l
)j (x)]. (B.8)

On the other hand, using the standard formula for the derivative of the logarithm of a deter-
minant, we obtain

(∂l
)j (x)(∂j lnρ ′
t )(x

′) = (∂l
)j (x)(∂j

−1)h(x ′) ∂h

[

lnρt (x) − ln
∂(
(x))

∂(x)

]

= (∂l lnρt )(x) − (∂j

−1)h(x ′)(∂l∂h
)j (x). (B.9)

Hence

r ′i
t (x ′) + d

′ij
t (x ′)(∂j lnρ ′

t )(x
′) = (∂k
)i(x) [rk

t (x) + dkl
t (x)(∂j


−1)h(x ′)(∂h∂l
)j (x)]
+ (∂k
)i(x)dkl

t (x) [(∂l lnρt )(x)

− (∂j

−1)h(x ′)(∂l∂h
)j (x)]

= (∂k
)i(x) [r̂ k
t (x) + dkl

t (x)(∂l lnρt )(x)]. (B.10)

Finally, using also the 1st of (B.2), we obtain the identity

v′i
t (x ′) = u′i

t (x ′) − r ′i
t (x ′) − d

′ij
t (x ′)(∂j lnρ ′

t )(x
′)

= (∂k
)i(x)[uk
t (x) − rk

t (x) − dkl
t (x)(∂l lnρt )(x)] = (∂k
)i(x)vk

t (x), (B.11)

which was to be shown.

Appendix C

We give here the explicit formula for the time-dependent noise covariance D̃t of the
Lagrangian-frame process corresponding to the harmonic Rouse polymer in linear shear-
ing flow considered in Sect. 3.4.3, keeping the notations of that section. D̃t is composed of
3 × 3 diagonal Fourier blocs

D̃ab
�,t = (γβ)−1

{

δa3δ3b + δa1δ1b

[

1 − σ�
√

1 + σ 2
�

sin

(
s(t − t0)
√

1 + σ 2
�

)]

+ δa2δ2b

[

1 + σ�
√

1 + σ 2
�

sin

(
s(t − t0)
√

1 + σ 2
�

)

+ 4σ 2
� sin2

(
s

2
√

1 + σ 2
�

)]

+ (δa1δ2b − δa2δ1b)

[
σ 2

�√
1 + σ 2

�

sin

(
s(t − t0)
√

1 + σ 2
�

)

− 2σ� sin2

(
s(t − t0)

2
√

1 + σ 2
�

)]}

(C.1)

that are positive matrices with constant determinant equal to (γβ)−3.
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Appendix D

We give here a proof of the FDT (5.2) around the non-stationary equilibrium dynamics de-
scribed by the Langevin equation (5.1). On the one hand, the two-time dynamical correlation
function is

〈O1(xs)O
2(xt )〉 =

∫

ρ(x)O1(x)P (s, x; t, y)O2(y) dx dy (D.1)

where ρ(x) = Z−1e−βH(x) is the Gibbs instantaneous PDF of the process xt satisfying the
SDE (5.1) and P (s, x; t, y) are the transition PDF’s. Using the first of the Kolmogorov
equations (2.8) and integrating by parts, we infer that

∂s〈O1(xs)O
2(xt )〉 = −

∫

(L†
s ρO1)(x)P (s, x; t, y)O2(y) dx dy, (D.2)

where

Ls = [−βdij
s (∂jH) + �ij

s (∂jH) − β−1(∂j�
ij
s )]∂i + ∂id

ij
s ∂j (D.3)

and L†
s ρ = 0. Let

Lh
s = Ls + hs[βdij

s (∂jO
1) − �ij

s (∂jO
1)]∂i, (D.4)

be the generators of the process obtained by the replacement H → H − hsO
1. Clearly,

(Lh
s )

†(ρeβhsO
1
) = 0. Expanded to the first order in hs , the latter equality implies that

βL†
s (ρO1) = − ∂

∂hs

∣
∣
∣
∣
h=0

(Lh
s )

†ρ. (D.5)

As a consequence,

∂s〈O1(xs)O
2(xt )〉 = β−1

∫ (
∂

∂hs

∣
∣
∣
∣
h=0

(Lh
s )

†ρ

)

(x)P (s, x; t, y)O2(y) dx dy

= β−1
∫

ρ(x)

(
∂

∂hs

∣
∣
∣
∣
h=0

Lh
s

)

(x)P (s, x; t, y)O2(y) dx dy. (D.6)

The right hand side is equal to β−1 δ
δhs

|h=0〈O2(xt )〉h so that the identity (5.2) follows.
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